По характеру питания микроорганизмы делятся

Типы питания бактерий определяются по характеру усвоения углерода и азота.

По усвоению углерода бактерии делят на 2 типа:

аутотрофы, или литотрофы, — бактерии, использующие в качестве источника углерода СО2 воздуха.

гетеротрофы, или органотрофы, — бактерии, которые нуждаются для своего питания в органическом углероде (углеводы, жирные кислоты).

По способности усваивать азот микроорганизмы делятся на 2 группы: аминоавтотрофы и амоногетеротрофы.

Аминоавтотрофы — для синтеза белка клетки используют молекулярный азот воздуха или усваивают его из аммонийных солей.

Аминогетеротрофы — получают азот из органических соединений — аминокислот, сложных белков. Сюда относятся все патогенные микроорганизмы и большинство сапро-фитов.

По характеру источника использования энергии микроорганизмы делятся на фототрофы, использующие для биосинтетических реакций энергию солнечного света, и хемо-трофы.

Хемотрофы получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенного для человека вида).

Графологическая структура «Питание бактерий» по характеру усвоения углерода по характеру усвоения азота по характеру использования источника энергии аутотрофы гетеротрофы амино- амино- фото- хемо-

(литотрофы) (органотрофы) автотрофы гетеро- трофы трофы

(от греч. litos — трофы камень)

Факторы роста: наряду с пептонами, углеводами, жирными кислотами и неорганическими элементами, бактерии нуждаются в специальных веществах — ростовых факторах, играющих роль катализаторов в биохимических процессах клетки и являющихся структурными единицами при образовании некоторых ферментов. К факторам роста относятся различные витамины, некоторые аминокислоты, пуриновые и пиримидиновые основания и др.

Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания.

Питательные среды подразделяются на 4 основные группы:

1. Универсальные (МПА, МПБ) содержат питательные вещества, в присутствии которых растут многие виды патогенных и непатогенных бактерий.

2. Питательные специальные среды применяют для выращивания бактерий, не размножающихся на универсальных средах (кровяной, сывороточный агар, сывороточный бульон).

3. Избирательные (элективные) среды служат для выделения определенного вида микробов, росту которых они способствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Соли желчных кислот, подавляя рост кишечной палочки, делают среду элективной для брюшного тифа.

4. Дифференциально-диагностические среды позволяют отличить (отдифференцировать) один вид микробов от другого по ферментативной активности, например, среды Гиса с углеводами и индикатором. При росте микроорганизмов, расщепляющих углеводы, изменяется цвет среды. Кроме того, в лабораториях для первичного посева и транспортировки исследуемого материала применяют консервирующие среды (глицериновую, магниевую и т. д.).

Дата добавления: 2015-05-28 ; просмотров: 750 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться только при постоянном притоке энергии.

В процессе питания организм получает вещества, необходимые для синтеза клеточных структур и являющиеся источником энергии для всех процессов жизнедеятельности. Характерными особенностями питания микробов являются поступление питательных веществ внутрь клетки через всю ее поверхность и высокая скорость процесса обмена веществ.

Клеточная стенка и ЦПМ микроорганизмов непроницаемы для многих высокомолекулярных веществ (полисахаридов, липидов, белков и др.), в связи с чем эти вещества вначале расщепляются экзоферментами, выделяемыми клетками во внешнюю среду, на более простые соединения (моно- и дисахариды, аминокислоты, органические кислоты, глицерин и т. д.). Такой процесс, свойственный только микроорганизмам, называется внешним перевариванием.

Питательные среды, на которых культивируют микроорганизмы в лабораторных и производственных условиях, должны отвечать следующим минимальным требованиям:

• в них должны присутствовать все элементы, из которых строится клетка;

• они должны быть в такой форме, в которой микроорганизмы способны их усваивать;

• они должны иметь оптимальное значение pH;

• среды должны быть стерильными.

Питательные среды различаются по консистенции, составу и назначению.

По консистенции различают жидкие, плотные и полужидкие среды. Плотные и полужидкие готовят путем добавления к жидким средам агар-агара или желатина. Для изготовления плотной среды в жидкую вносят обычно 1,5—2,0 % агар-агара, для полужидкой — 0,2—0,5 %.

Состав питательных сред определяется пищевыми потребностями микроорганизмов. В зависимости от состава исходных компонентов различают среды натуральные, синтетические и полусинтетические.

Натуральные среды состоят из естественных субстратов (мяса, молока, овощей и т. д.). К натуральным средам относятся мясопептонный бульон, гидролизованное молоко, пивное сусло, дрожжевой экстракт, настой сена, картофельная среда и др. Расшифровать химический состав таких сред довольно сложно. Молочнокислые бактерии очень требовательны к источникам питания, поэтому их выращивают в молоке, гидролизованном молоке, молочной сыворотке, пивном сусле, специально разработанных средах.

Синтетической называют среду, составленную из известных химических соединений в определенных количествах. Кишечная палочка неприхотлива в отношении питания, поэтому способна расти на синтетической среде достаточно простого состава.

Читайте также:  Отрубевидный лишай способы лечения

Полусинтетические среды содержат как известные компоненты, так и субстраты неопределенного состава. Например, в синтетическую среду вносят дрожжевой автолизат или мясопептонный бульон.

По назначению различают элективные и дифференциально-диагностические среды.

Элективные среды используют для выделения отдельных групп микроорганизмов из мест их естественного обитания.

Дифференциально-диагностические среды используют для быстрой индикации микроорганизмов на основе их характерных признаков.

Потребности микроорганизмов в питательных веществах. Исходя из химического состава микроорганизмов, для биосинтеза основных макромолекул клетка должна получать вещества, содержащие макроэлементы С, О, Н, N , S , Р, Са, Fe , Mg и микроэлементы М n , Со, Мо, С u , Zn и др. Макроэлементы требуются в сравнительно больших количествах, от 0,2 до 0,5 г/л, тогда как микроэлементы нужны в очень низких концентрациях — от 0,1 до 0,001 мг/л. Минеральные вещества участвуют в регуляции осмотического давления в клетке, pH и Eh среды. Основной функцией микроэлементов является активация различных ферментов.

Среди всех вышеуказанных элементов наибольшее значение в питании микроорганизмов имеет углерод. В зависимости от используемого источника углерода микроорганизмы делятся на: аутотрофы (от греч. autos — сам, t гор he — пища), использующие для конструктивных целей С O 2, и гетеротрофы (от греч. heteros — другой), потребляющие углерод из органических соединений.

Наибольшая степень гетеротрофности присуща микроорганизмам, являющимся облигатными или факультативными паразитами (от греч. parasitos — нахлебник). К факультативным гетеротрофным паразитам относятся патогенные бактерии, вызывающие инфекционные заболевания у человека, животных и растений; к облигатным, способным существовать только внутри клетки хозяина, относятся риккетсии, хламидии, вирусы, некоторые простейшие.

Следующую крупную группу гетеротрофов составляют сапрофиты (от греч. sapros — гнилой, phyton — растение), использующие для своего питания разлагающиеся растительные или животные ткани. К сапрофитам относится большинство бактерий и микромицетов.

Для многих гетеротрофов оптимальным и наиболее доступным органическим источником углерода являются углеводы. Особенно широко они используют моносахариды — гексозы и пентозы. Некоторые группы микроорганизмов способны использовать в качестве источника углерода органические кислоты, первичные спирты, циклические соединения и др.

Азот и сера входят в состав органических соединений клетки в виде аминогрупп и сульфгидрильных групп аминокислот. Некоторые бактерии поглощают эти два элемента в окисленном состоянии — в форме нитратов и сульфатов. Поэтому они сначала восстанавливаются, а затем уже используются в процессах биосинтеза. Большинство бактерий используют азот в восстановленной форме в виде аминокислот, мочевины. Источником серы могут служить сульфиды или серосодержащие аминокислоты (например, цистеин).

Факторы роста — это вещества, которые не синтезируются многими бактериями, но необходимы им для построения органических компонентов клетки. Поэтому они должны присутствовать в питательной среде для выращивания микроорганизмов. К факторам роста относятся:

• аминокислоты, которые нужны для синтеза белков;

• пурины и пиримидины, используемые для синтеза нуклеиновых кислот;

• витамины, являющиеся простетическими группами или активными центрами некоторых ферментов.

Микроорганизмы, нуждающиеся в факторах роста, называют ауксотрофами. Микроорганизмы, которые сами синтезируют необходимые им факторы роста, называют прототрофами.

9.2.1. Типы питания микроорганизмов

Подразделение микроорганизмов на два основных типа — автотрофы и гетеротрофы — оказалось явно недостаточным, чтобы отразить все многообразие пищевых и энергетических потребностей микроорганизмов. Поэтому классификация микроорганизмов по типам питания включает такие основные критерии, как источник углерода, источник энергии и донор электронов. На основе вышеуказанных критериев все микроорганизмы можно разделить на четыре группы (табл. 6).

Таблица 6. Классификация микроорганизмов по типам питания

1. Классификация микроорганизмов по типу питания.

Различают углеродное и азотное питание.

I. По типу углеродного питания микроорганизмы принято делить на аутотрофы и гетеротрофы. Аутотрофы (прототрофы) – микроорганизмы, способные воспринимать углерод из углекислоты воздуха. К ним относятся нитрифицирующие бактерии, железобактерии, серобактерии. Аутотрофы способны использовать воспринятую углекислоту для синтеза сложных органических соединений. Таким образом, аутотрофы обладают способностью синтезировать сложные органические соединения из неорганических. Поскольку такие микробы не нуждаются в готовых органических соединениях, среди них нет болезнетворных. Однако среди аутотрофов встречаются микроорганизмы, обладающие способностью усваивать углерод из углекислоты воздуха и из органических соединений. Такие микроорганизмы, имеющие смешанный тип питания определены как миксотрофы.Гетеротрофы в противоположность аутотрофам используют углерод из любых готовых органических соединений (чаще всего это углерод спиртов, сахаров, органических кислот, многоатомных спиртов). К гетеротрофам принадлежат возбудители различного рода брожений, гнилостные микробы и микроорганизмы – возбудители различных заболеваний. Однако деление микроорганизмов на аутотрофы и гетеротрофы достаточно условно, так как при изменении условий среды обмен веществ у микроорганизмов может меняться.Гетеротрофы включают в себя две подгруппы: метатрофы (сапрофиты) – живут за счет использования мертвых субстратов (гнилостные микроорганизмы) и паратрофы – паразитические микроорганизмы, живущие на поверхности или внутри организма хозяина и питающиеся за его счет.

Читайте также:  Болят ноги перед месячными

II. По способу усвоения азотистых веществ микроорганизмы подразделяют на четыре группы:

·Протеолитические, способные расщеплять нативные белки, пептиды, аминокислоты.

·Дезаминирующие, способные отщеплять аминогруппы только у свободных аминокислот.

·Нитритно-нитратные, усваивающие окисленные формы азота.

·Азотфиксирующие, обладающие свойством усваивать атмосферный азот.

Потребность микроорганизмов в зольных элементах невелика. Необходимые для жизни минеральные соединения присутствуют в естественной среде обитания.Все изученные бактерии нуждаются в витаминах или ростовых веществах, которые играют роль катализаторов биохимических процессов микробной клетки. Они же служат структурными единицами при образовании некоторых ферментов. К витаминам, необходимым микробной клетке принадлежат: биотин, витамины группы В, витамин К и ряд других. Избыток витаминов задерживает рост бактерий.Кроме витаминов к факторам роста бактерий относят пуриновые и пиримидиновые основания (аденин, гуанин, цитозин, тимин, урацил, ксантин и гипоксантин). Некоторые микроорганизмы в качестве ростовых факторов используют аминокислоты, синтезируемые самой микробной клеткой или находящиеся в среде. Некоторые микроорганизмы обладают способностью синтезировать ростовые факторы в относительно больших количествах, обеспечивая не только свои потребности, но и интенсивно выделяя синтезируемые вещества в окружающую среду. Например, пропионовокислые бактерии способны синтезировать витамин В12, что активно используется в промышленности.Кроме описанных способов получения микроорганизмами питательных веществ часто применяется классификация микроорганизмов в зависимости от источника энергии:

· Фототрофные микроорганизмы – это микроорганизмы, способные использовать в качестве источника энергии свет. Например, синезеленые водоросли, пурпурные серобактерии. Эти микроорганизмы содержат пигменты, по своему составу близкие к хлорофиллу растений.

· Хемотрофные микроорганизмы получают энергию в результате окислительно-восстановительных реакций с участием питательных субстратов.

Способы поступления питательных веществ в клетку

Поступление веществ в клетку и выделение продуктов обмена в окружающую среду происходит у микроорганизмов через всю поверхность тела. У микроорганизмов очень большая по сравнению с объемом всасывающая пищу поверхность клетки, что обусловливает весьма активный обмен веществ. Поступление питательных веществ в клетку сложный процесс.

Вещества питательной среды могут поступать в клетку только в растворенном состоянии. Нерастворимые сложные органические соединения должны подвергнуться расщеплению на более простые вне клетки, что происходит с помощью экзоферментов микроорганизмов.

Наиболее известны два пути проникновения веществ в клетку: осмос и адсорбция (специфический перенос). Активная роль в этих процессах принадлежит цитоплазматической мембране.

О с м о с представляет собой диффузию веществ в растворах через полупроницаемую перепонку (мембрану). Как известно, через такие мембраны могут диффундировать вещества, находящиеся в состоянии истинных растворов. Возникает осмос под действием разности осмотических давлений в растворах по обе стороны полупроницаемой мембраны.

Оболочка клетки проницаема и задерживает лишь макромолекулы. Цитоплазматическая мембрана клетки обладает полупроницаемостью; она является осмотическим барьером, регулируя поступление в клетку и выход из неё растворённых веществ.

При осмотическом проникновении питательных веществ в клетку движущей силой служит разность осмотических давлений между средой и клеткой. Такой пассивный перенос веществ не требует затраты энергии и протекает до выравнивания концентрации с наружным раствором.

Если микроорганизм попадает в субстрат, осмотическое давление которого выше, чем в клетке, то цитоплазма отдает воду во внешнюю среду. Питательные вещества в клетку не поступают, содержимое клетки уменьшается в объёме, и протопласт отстаёт от клеточной оболочки. Это явление называется плазмолизом клетки.

При чрезмерно низком осмотическом давлении внешней среды может наступить плазмоптис клетки – явление, обратное плазмолису, когда вследствие высокой разности осмотических давлений цитоплазма быстро переполняется водой. Это может привести к разрыву клеточной оболочки, что наблюдается, например, при помещении бактерий в дистиллированную воду.

Второй путь поступления веществ в клетку – активный – путём переноса их особыми, локализованными в цитоплазматической мембране веществами ферментной природы. Эти переносчики, называемые пермеазами, обладают субстратной специфичностью. Каждый транспортирует только определённое вещество, имеющее сходную с белком-переносчиком стереохимическую структуру молекулы. На внешней стороне цитоплазматической мембраны переносчик адсорбирует вещество – вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне её транспортируемое вещество в цитоплазму. Вещество может поступать и тогда, когда концентрация его в клетке больше, чем в среде. При таком переносе веществ затрачивается энергия. При этом транспортируемое вещество может подвергнуться изменению, например из не растворимого в мембране переходит в растворимое состояние.

Цитоплазматическая мембрана, таким образом, является не только осмотическим барьером, но и обладает избирательной проницаемостью.

Читайте также:  Как собрать мочу на бакпосев

2. Микробиологические процессы, протекающие при квашении. Квашение, соление и мочение относят к биохимическим методам консервирования. Он основан на образовании естественного консерванта – молочной кислоты, которая накапливается в результате молочнокислого брожения. Сущность молочнокислого брожения состоит в преобразовании Сахаров в молочную кислоту под действием молочнокислых бактерий. Молочная кислота придает продукту специфический вкус и запах, подавляет развитие посторонней микрофлоры.

Молочнокислое брожение, может происходить двумя путями:

♦ гомоферментативным – когда преимущественно образуется молочная кислота;

♦ гетероферментативным – кроме молочной кислоты образуются и другие побочные продукты: углекислый газ, лимонная и пировиноградная кислоты и др.

Лучшая температура для периода квашения – комнатная, для зимнего хранения – от 5 °C тепла до нуля. Квашеная капуста считается готовой к употреблению, когда закончится молочнокислое брожение. К концу брожения она приобретает светлый, янтарно – желтый цвет, обладает приятным запахом и кисловатым вкусом. Горький вкус свидетельствует о ненормальном ходе брожения или некачественной подготовке капусты к квашению (плохая зачистка, оставлены зеленые листья).

Характеристика микроорганизмов – возбудителей порчи.

1.
В состав микроорганизмов входят вода, белки, нуклеиновые кислоты, углеводы, липиды,
минеральные вещества.
Вода – основной компонент бактериальной клетки, составляющий около 80 % ее массы. Она находится в свободном или связанном состоянии со структурными элементами клетки. В спорах количество воды уменьшается до 18.20 %. Вода является растворителем для многих веществ, а также выполняет механическую роль в обеспечении тургора. При плазмолизе . потере клеткой воды в гипертоническом растворе . происходит отслоение протоплазмы от клеточной оболочки. Удаление воды из клетки, высушивание приостанавливают процессы метаболизма. Большинство микроорганизмов хорошо переносят высушивание. При недостатке воды микроорганизмы не размножаются.
Высушивание в вакууме из замороженного состояния (лиофилизация) прекращает размножение и способствует длительному сохранению микробных особей.

Белки (40.80 % сухой массы) определяют важнейшие биологические свойства бактерий и
состоят обычно из сочетаний 20 аминокислот. В состав бактерий входит диаминопимелиновая кислота (ДАП), отсутствующая в клетках человека и животных. Бактерии содержат более 2000 различных белков, находящихся в структурных компонентах и участвующих в процессах метаболизма. Большая часть белков обладает ферментативной активностью. Белки бактериальной клетки обусловливают антигенность и иммуногенность, вирулентность, видовую принадлежность бактерий.

Нуклеиновые кислоты бактерий выполняют функции, аналогичные нуклеиновым кислотам эукариотических клеток: молекула ДНК в виде хромосомы отвечает за наследственность, рибонуклеиновые кислоты (информационная, или матричная, транспортная и рибосомная) участвуют в биосинтезе белка.

Бактерии можно характеризовать (таксономически) по содержанию суммы гуанина и цитозина (ГЦ) в молярных процентах (М%) от общего количества оснований ДНК. Более точной характеристикой микроорганизмов является гибридизация их ДНК. Основа метода гибридизации ДНК . способность денатурированной (однонитчатой) ДНК ренатурироваться, т.е. соединяться с комплементарной нитью ДНК и образовывать двухцепочечную молекулу ДНК.

Углеводы бактерий представлены простыми веществами (моно- и дисахариды) и комплексными соединениями.
Полисахариды часто входят в состав капсул. Некоторые внутриклеточные
полисахариды (крахмал, гликоген и др.) являются запасными питательными веществами.

Лип иды в основном входят в состав цитоплазматической мембраны и ее производных, а также клеточной стенки бактерий, например наружной мембраны, где, кроме биомолекулярного слоя липидов, имеется ЛПС. Липиды могут выполнять в цитоплазме роль запасных питательных веществ. Липиды бактерий представлены фосфолипидами, жирными кислотами и гли-церидами. Наибольшее количество липидов (до 40 %) содержат микобактерии туберкулеза.

Минеральные вещества бактерий обнаруживают в золе после сжигания клеток. В большом количестве выявляются фосфор, калий, натрий, сера, железо, кальций, магний, а также микроэлементы (цинк, медь, кобальт, барий, марганец и др.).Они участвуют в регуляции осмотического давления, рН среды, окислительно-восстановительного потенциала, активируют ферменты, входят в состав ферментов, витаминов и структурных компонентов микробной клетки.
2.
Микрофлора зерна
В 1 гр зерна содержатся миллионы микроорганизмов. Качественный состав микрофлоры: 90% состовляют бактерии, 5-7% споры плесневых грибов и небольшое число дрожжей. Среди бактерий преобладает гербикола, считается, что большое число клеток гербиколы является высоким показателем качества зерна. Встречаются также микрококки, молочнокислые бактерии и споровые анаэробные палочки. Преобладает полевая плесень, мало пенецилов и аспергиловю По мере хранения зерна, полевая плесень отмирает, а доминирующими становятся пенецилы и аспергилы, которые называют плесенями хранения. Жизнедеятельность микрофлоры зависит от температуры окружающей среды. Большинство бактерий и грибов мезофилы, оптимальная температура развития которых 20-30 градусов. Влияние температур на развитие микроор

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector